GROUND WATER RESOURCE EVALUATION PINE MEADOW RIVERSIDE COUNTY, CALIFORNIA

Prepared for:

Lake Hemet Municipal Water District 2480 E. Florida Avenue, P.O. Box 5039 Hemet, CA 92544

GSi/water 520 Mission Street South Pasadena, California 91030 (626) 441-0039

April 6, 2004

PROJECT TEAM

Reinis Berzins

Data Collection, Analysis, Report and Graphics

Under the Supervision of:

R. A. Sorensen – RG 6702; HG 643 General Manager GSi/water

J. H. Birman – RG 994; HG 125 President GSi/water

TABLE OF CONTENTS

Page

REFERENCES		1
INTRODUCTION . Figure 1:	Project Location	
GEOHYDROLOGIC Figure 2:	C SETTING	
EXISTING WELLS Figure 3a: Figure 3b:	Static Water Levels and Precipitation vs. Time	7
WATER BUDGET Figure 4:	Water Budget	3 9
	Water Quality	
INTERPRETATION	S 13	3
	DNS AND POTENTIAL TESTHOLE LOCATIONS 14 Testhole Locations 14	

APPENDICES

Appendix	A:	Well Summary, Drillers' Logs and As-Built Diagrams
Appendix	B:	LHMWD Water Level and Production Records
Appendix	C:	Darcy's Law, Storage Calculations, and Precipitation Data
Appendix	D:	Water Quality Analyses and Stiff Diagrams

REFERENCES USED

- Bookman-Edmonston Engineering, Inc., 1970, Details of Test Well Drilling Program in the Pine Meadows Ground Water Basin.
- Dibblee, T, 1981, Geologic Map of the Idyllwild (15 Minute) Quadrangle, California; South Coast Geological Society, Santa Anna, California.
- Driscoll, F.G., 1986, Groundwater and Wells, 2nd ed.: Johnson Filtration Systems, Inc., St. Paul, Minnesota.
- Durbin, T.J., 1975, Ground-water Hydrology of Garner Valley, San Jacinto Mountains, California A Mathematical Analysis of Recharge and Discharge, USGS Open-File Report 75-305.
- Fetter, C.W., 1994, Applied Hydrogeology, 3rd ed.: Prentice Hall, Upper Saddle River, New Jersey.
- Fraser, D.M., 1931, Geology of San Jacinto quadrangle south of San Gorgonio Pass, California, California Division of Mines, Mining in California, v. 27, no. 4, p. 494-540.
- Freeze, R.A. & Cherry, J.A., 1979, Groundwater.: Prentice Hall, Englewood Cliffs, New Jersey.
- Kaehler, C.A. and Hsieh, P.A., 1994, Hydraulic Properties of a Fractured -Rock Aquifer, Lee Valley, San Diego County, California, USGS Water Supply Paper 2394, 64.
- Roscoe Moss Company, 1990, Handbook of Ground Water Developmentent.: John Wiley & Sons, New York
- Sharp, R.V., 1967, San Jacinto Fault Zone in the Peninsular Ranges of Southern California, Geological Society of America Bulletin, v. 78, p. 705-730.
- United States Geological Survey, topographic map (scale: 1:24,000): Anza, Calif.quadrangle, 1981; Butterfly Peak, Calif. quadrangle, 1981; Idyllwild, Calif. quadrangle, 1981; Palm View Peak, Calif. quadrangle, 1981.

Internet Resources:

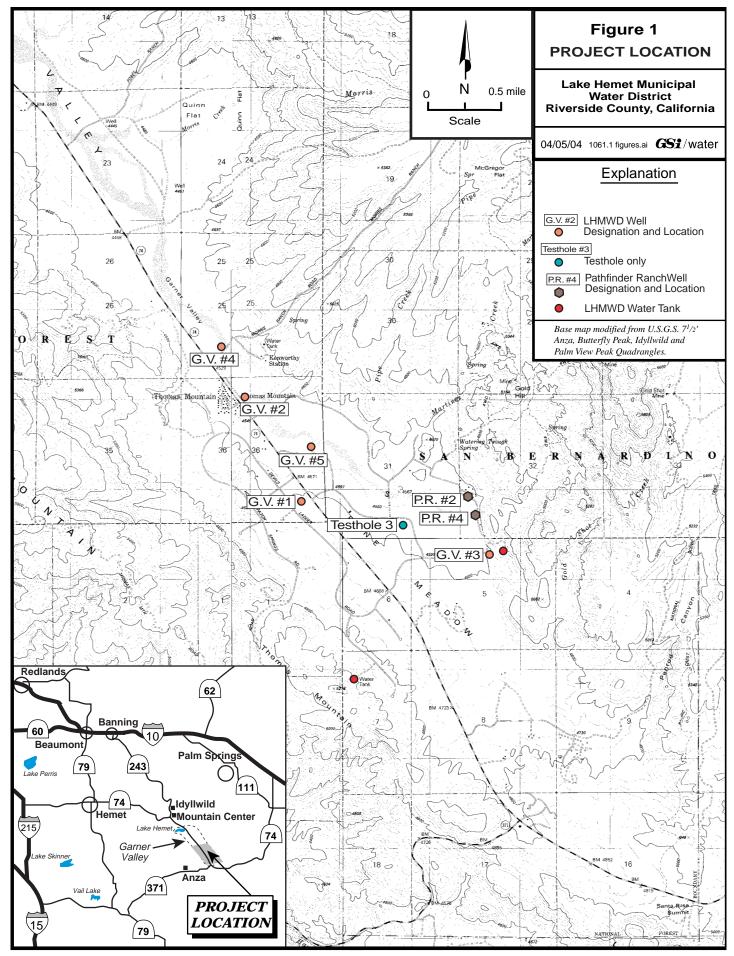
Clackamas County Soil and Water Conservation District, 2003. www.cc-swcd.org - Pasture irrigation data.

Equine Nutrition Center, 2003. www.equinenutritioncenter.com - Equine water consumption data.

Microsoft Terraserver, 2003. www.terraserver-usa.com - Aerial photographs and digital topographic maps.

INTRODUCTION

Figure 1: Project Location


This report provides an evaluation of the geohydrologic setting and ground water resources of Pine Meadow in Garner Valley, Riverside County, California. Specifically in this report, we evaluate whether Lake Hemet Municipal Water District (LHMWD) can expect to be able to support the water demand of residents of the area through extended periods of drought. At present, there are 217 residences in the Pine Meadows area but this is expected to grow to 307 residences in the near future.

Pine Meadow is located in the southern half of Garner Valley on the south-western slope of the San Jacinto Mountains (Figure 1). Garner Valley is bounded on both sides by ridges of approximately 5000 ft elevation to the west and 6500 ft elevation to the east. The valley trends northwest-southeast from the drainage divide at the Santa Rosa summit (5000 ft elevation) to Lake Hemet (4320 ft elevation). Pine Meadow is located to the north and east of Thomas Mountain.

LHMWD currently owns five wells in the Pine Meadows area. Wells G.V. #1 and #2 were drilled in 1969. It is not known when Well G.V. #3 was drilled, but it has been inactive since 1984 due to water quality issues. Well G.V. #4 was drilled in 1985 and is the highest producer. G.V. #5 was drilled in 2002.

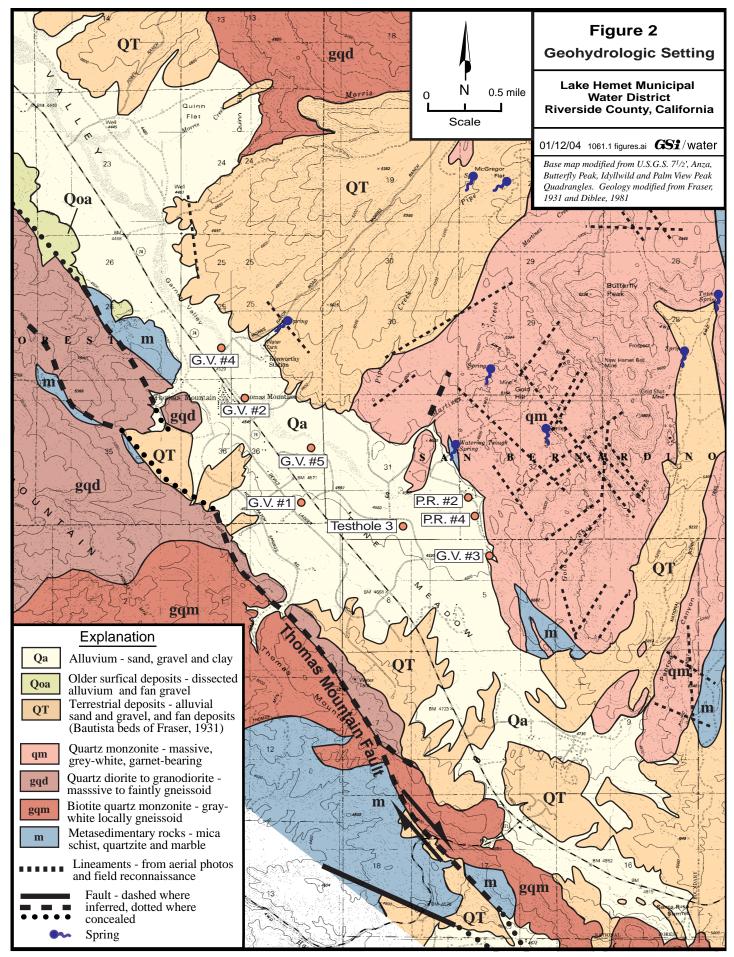
The water supply system is currently in the process of being upgraded. Two new 500,000 gallon water tanks are planned to be installed by the end of 2004 - one replacing the current 350,000 gallon tank. In addition, pipeline and pressure system improvements are also planned.

This study included a review of published literature and information from LHMWD files, analysis of aerial photographs, geologic and topographic maps, and a field reconnaissance. Fieldwork was conducted from 29th September, 2003 to 2nd October, 2003.

GEOHYDROLOGIC SETTING Figure 2: Geohydrologic Setting

A review of field data and available literature was used to provide geohydrologic context with which to interpret the existing well data (Figure 2).

There are primarily two classifications of lithologic units that will be used in this report: the bedrock units and the younger sedimentary units. The hills flanking the valley are primarily bedrock consisting of metasediments (mica schist and gneiss) and granite (quartz diorite, quartz monzonite and granodiorite).


Although field reconnaissance indicates that few zones of pervasive fracturing exist in the bedrock, large-scale lineaments can be seen in the field and on aerial photographs. These lineaments represent a series of dikes and fractures. These lineaments have two visible trends. A northwest-southeast trending set appears to be predominantly the result of lithologic variations, such as dikes. By themselves, dikes would limit the aquifer potential of the bedrock by filling one-time open fractures. However, the other lineament set - which is northeast-southwest trending - appears to represent fractures, such as faulting. Many of the dikes are offset by the suspected faulting and the rock may be shattered in these areas. A number of springs occur along or near where these features intersect.

The main mapped structural feature is the Thomas Mountain Fault which is exposed on the western side of Garner Valley. Zones of fracturing are sometimes associated with faulting of granitic rocks but where the Thomas Mountain Fault is exposed in the field, it consists mainly of fine-grained clayey gouge with no extensive fracture zone. However, the Thomas Mountain Fault may not be the only major fault in the valley. The eastern side of the Valley is coincident with a possible extension of the Hot Springs Fault. The Hot Springs Fault shown by Dibblee (1982) terminates along the eastern edge of Lake Hemet. We have found no extension of this fault as having been mapped, but if it extends into Pine Meadow, the intersection of the Hot Springs Fault with the smaller northeast-southwest trending faults, may represent untapped aquifer conditions for the area.

The younger sedimentary units exposed near Pine Meadow include recent alluvial fill and older terrestrial deposits. The latter were termed the "Bautista beds" by Fraser, 1931 and this convention will be used in this report. The alluvial fill is comprised of silty and clayey sand. The Bautista beds consist of well stratified clay layers and fine sand to coarse gravels in a clay matrix.

Production from wells in the Pine Meadows basin is interpreted to be from the recent alluvium, the Bautista beds and possibly the weathered uppermost part of the granite. Insufficient information is available from the drilling of the wells to accurately determine how much production is derived from each of these units. However, estimates can be made based on drilling in similar settings and the Districts current well production records.

The recent alluvium likely produces 25 - 60gpm and would have the highest hydraulic conductivity of these units because of its unconsolidated and porous nature. Production from the Bautista beds is probably slightly lower (15 - 50gpm) due to its more compacted nature, and flow is likely confined to layers of porous coarse-grained sands. Production from the bedrock may vary considerably but likely produces 10 - 25gpm. Drilling deeper into bedrock is unlikely to produce more than 10gpm unless a significant fracture zone is encountered.

EXISTING WELLS

Figure 3a: Water Levels Figure 3b: Production Record

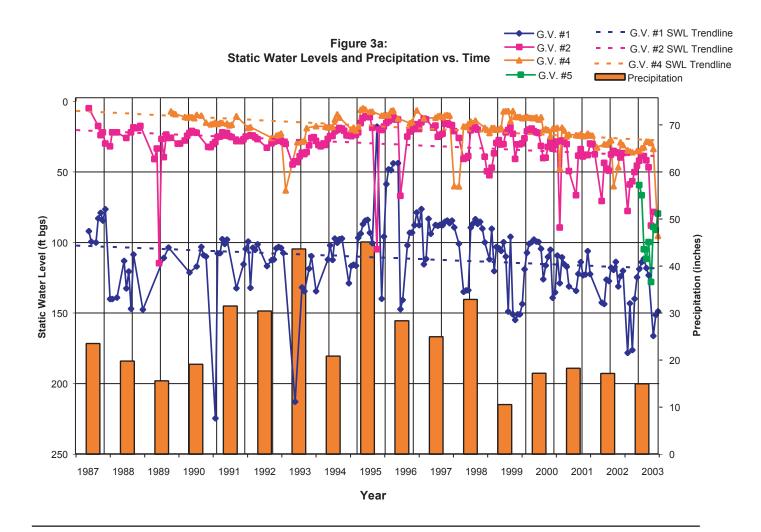
LHMWD currently owns five wells in the Pine Meadows basin and four of those are active.

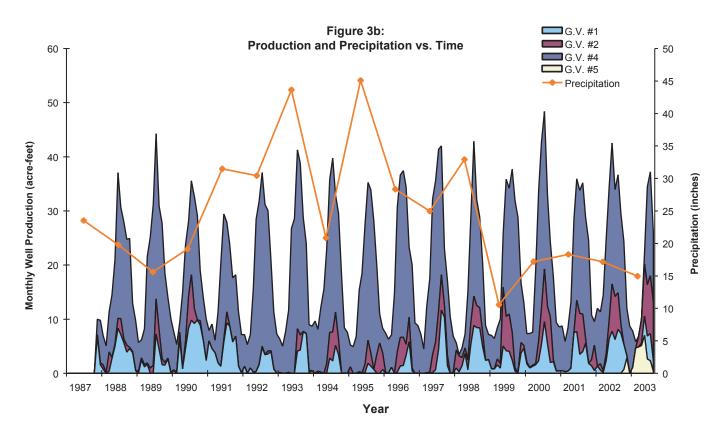
G.V. #1 and #2 were drilled in 1969 to a depths of 477ft and 328ft respectively (Appendix A). Well G.V. #1 produces 110gpm and Well G.V.#2 produces 90 gpm. G.V. #1 has a static water level (SWL) of approximately 110ft below ground – the lowest of all the LHMWD wells (Figure 3a).

No information is available on the drilling or construction of G.V. #3. Only water quality information is available up to 1984. The well has not been used since 1984 because of the "sulfurous" taste and smell of the water produced. Drilling and construction information for a Testhole #3 is reported by Bookman-Edmonston Engineering, Inc. (1970), but this testhole is not the same as G.V. #3.

G.V. #4 was drilled in 1985 to a depth of 323ft and is currently LHMWD's highest producing well in the Pine Meadows basin at 175gpm.

G.V. #5 was drilled to a depth of 465ft in 2002. The well can reportedly sustain 50 - 80gpm, but the water produced also has a "sulfurous" taste and smell.


The mean total production from the Pine Meadows basin wells is 233 acre-feet/year.


The Pathfinder Ranch also owns several relatively shallow wells on their property, one of which produces water with a "sulfurous" taste and smell.

The static water levels in G.V. #1, #2 and #4 exhibit an overall decline since 1987, overprinted by a cyclical pattern that reflects climatic variations. It is unclear whether the decline indicates a steadily dropping water table or is simply due to the present low precipitation. The cyclical precipitation change will be reflected in the static water levels in a well after a time delay, termed the lag period. Well G.V. #1 has the deepest water level, the longest lag period (approximately 3 years) and the greatest amount of response to increased precipitation (approximately 25 feet). Wells G.V. #2 and #4 have much shallower static water levels, a shorter (2 year) lag period and less response (approximately 15 feet).

To date there is insufficient data available to identify recovery response times and static water level decline for G.V. #5.

The similar, relatively stable water levels and pumping rates in G.V. #2 and #4 suggest that these wells draw water from the same aquifer. The variable water levels and pumping rates, and "sulfurous" taste and smell of water from G.V. #3 and #5 and the Pathfinder Ranch well suggests that these wells are drawing water from a different aquifer than G.V. #2 and #4.

WATER BUDGET

Figure 4: Water Budget

The amount of ground water in storage in Pine Meadow was calculated by estimating the volume and porosity of the different geologic units between the northern end of Pine Meadow and the drainage divide at Santa Rosa Summit. Our calculations suggest Pine Meadow has an approximate storage capacity of 86,500 acre-feet. This is the total volume of ground water that is present in the aquifer. However, due to retention, it is not possible to extract all this ground water. If extraction of ground water exceeds the amount of recharge to the basin, water in storage begins to be depleted. Removal of ground water storage in acceptable on a short-term basis. However, if done as a long-term practice, it can result in the lowering of water levels, compaction of the aquifer, bacteria problems in wells, and other detrimental effects. Therefore, excessive depletion of ground water in storage is not advisable.

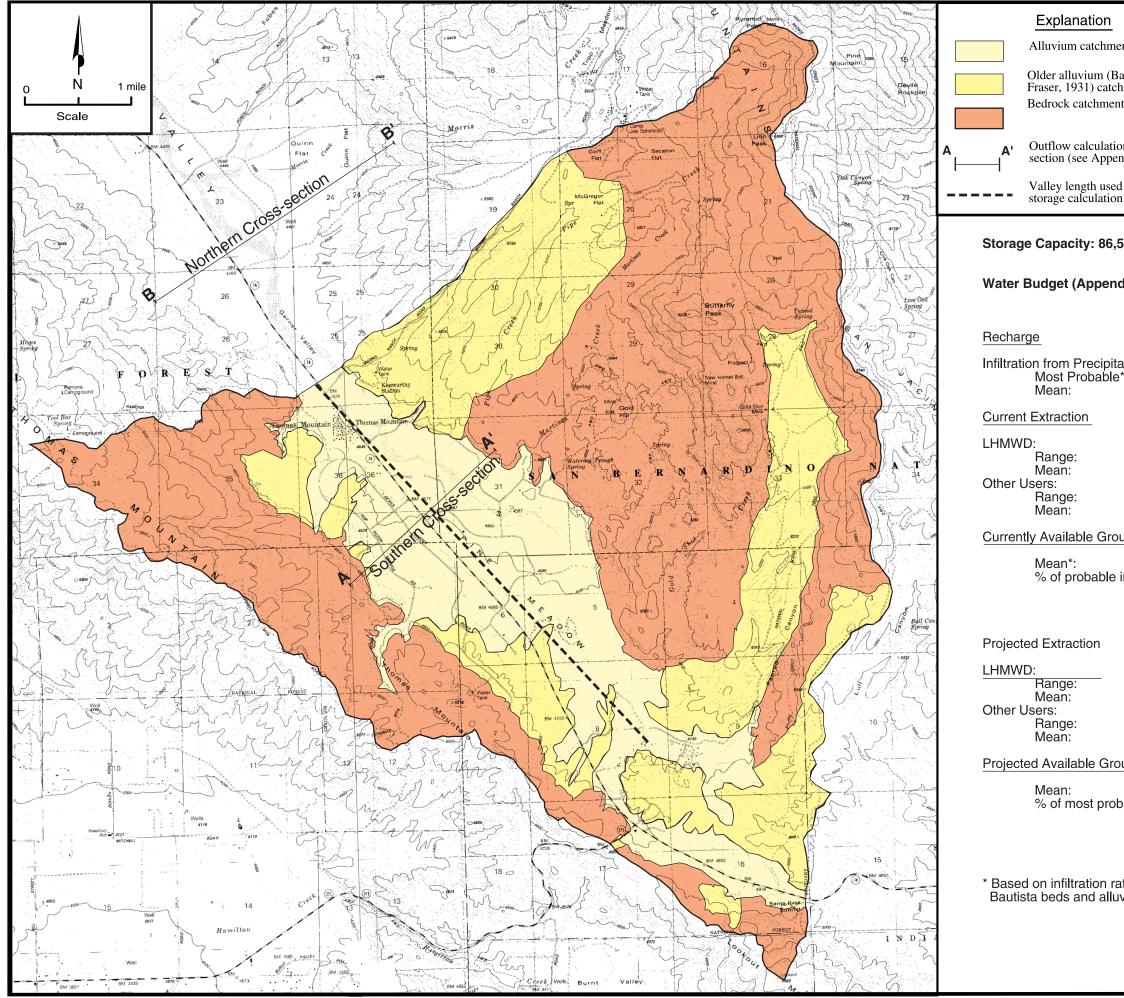

To avoid excessive depletion, a water budget was done to the Pine Meadow area. The water budget calculates the amount of ground water recharge for the basin and how much water is being extracted. If recharge exceeds extraction, there is sufficient ground water to support demand. If extraction exceeds recharge, the basin is in overdraft and ground water has begun to be removed from storage.

Figure 4 shows the catchment area for the Pine Meadow. The mean annual precipitation of 19.91 inches/year for the total catchment area was calculated by averaging 32 years of precipitation data for Lake Hemet (data provided by Riverside County Flood Control). In order to estimate precipitation in a drought, only data from 1999-2002 was used. The calculated precipitation for a drought period is 10.44 inches per year.

A range of estimated infiltration rates was used, taking into account relative differences in the permeability of ground surfaces within the catchment area. The mean infiltration value calculated for the above range was 1186 acre-feet/year for an average year or 622 acre-feet/year in a drought (Appendix C). The "most probable" infiltration value (1389 acre-feet/year for an average year, 729 acre-feet/year in a drought) is an estimate based on the most likely infiltration rates.

Information from LHMWD of current residential water demand was used to estimate the amount of water that would be required to support 307 residences in Pine Meadow. This projected demand was calculated to be 343 acre-feet/year. In addition, the ranches at the southern end of Garner Valley were estimated to be extracting 297 acre-feet/year based on estimates of the amount of water that would be required to maintain livestock, pastureland and for residential use.

The water budget calculations indicate that there is sufficient ground water in the Pine Meadow basin to supply more than the projected 307 residences in a drought year.

nt area Water Budget											
autista beds c hment area nt area		Lake Hemet Municipal Water District Riverside County, California									
on line of	03/1:	3/03 1	1061.1 fig3wbgt.ai	GS1 /water							
ndix A) 1 for 1	I	Base map modified from U.S.G.S. 7 ¹ /2', Anza, Butterfly Peak, Idyllwild and Palm View Peak Quadrangles.									
500 acre-fe	et										
dix C):											
Averag <i>(ac</i>	e Precipitatic <i>re-feet/year)</i>	on Year	Dro (acre	ught Year e-feet/year)							
ation: *:	1389 1186		729 622								
	219 - 267 243										
	151 - 442 297										
und Water	(Recharge m	iinus Ex	traction)								
infiltration:	850 61%		189 26%								
	Currer availat	itly a su ble wate	urplus of er exists								
	260.8 - 426 343										

151 - 442 297

Projected Available Ground Water (Recharge minus Projected Extraction)

	749	88
bable:	54%	12%

A surplus of available water will likely exist after the projected increase in extraction

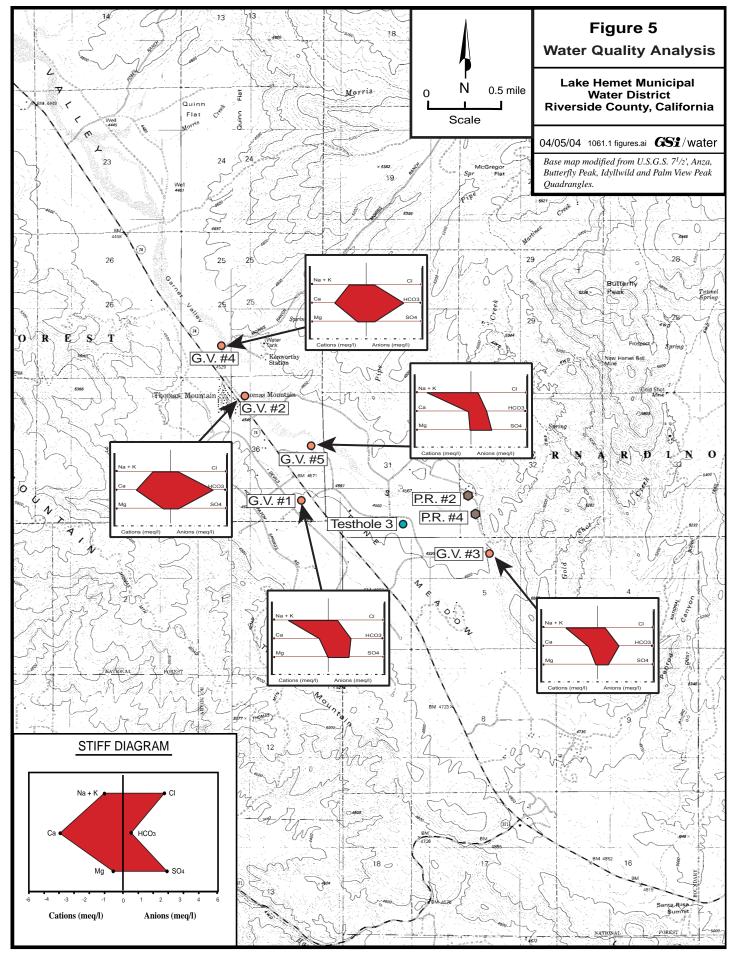
* Based on infiltration rates of 1%, 10% and 15% for granitic, Bautista beds and alluvium respectively.

WATER QUALITY Figure 5: Water Quality

Water quality analyses were used to identify different sources of water being produced by the LHMWD wells. Water quality analyses are available from 2002 for all wells except G.V. #3. The most recent water quality analysis for G.V. #3 is from 1984.

Stiff diagrams were constructed for water from each well and are presented in Figure 5 and Appendix D. Stiff diagrams are a way of representing the chemical characteristics of a water sample by plotting anions and cations on positive and negative side of the y-axis. The resulting polygonal shape, and the primary anion and cation, indicate the type of water and similar shapes indicate similar water type.

The water from G.V. #2 and #4 is of calcium-bicarbonate type. The water from G.V. #3 and #5 is of sodium-bicarbonate and sodium-sulfate type. This suggests that water being produced in the northerly (G.V. #2 and #4) and southerly (G.V. #3 and #5) wells may be from two different aquifers.


High aluminum and iron concentrations were measured in water from G.V. #5. High aluminum is unusual in ground water and may be an indication that the samples were not filtered by the laboratory prior to analysis. The resulting values therefore, may be lower than reported.

The water from G.V. #1 is of sodium-bicarbonate type. The source of this water may be a mixture of the water being extracted from G.V. #3 and #5.

There are several possibilities to explain these variations in water quality.

- One possibility may be related to the fact that the bottom of wells G.V. #1 and #5 are approximately 100ft lower in elevation than the other wells. Water of a different quality may be produced from a lower elevation.
- There is also a spatial difference between the southerly and northerly wells. This may suggest that a geological subsurface barrier exists trending northeast-southwest, approximately aligned with the contact of the Bautista beds and quartz monzonite and the two lineations identified to the north of Pine Meadow.
- The sulfurous taste and smell was reported from G.V. #3, #5 and one of the Pathfinder Ranch wells, all of which are more southerly than the other wells. The source of this sulfurous smell is likely to be due to a geological process, rather than a bacteriological process since only three wells in the area are apparently affected. Water quality testing of G.V. #3 and #5 should include tests for sulfides because sulfate does not appear to be consistently high in either of these wells.

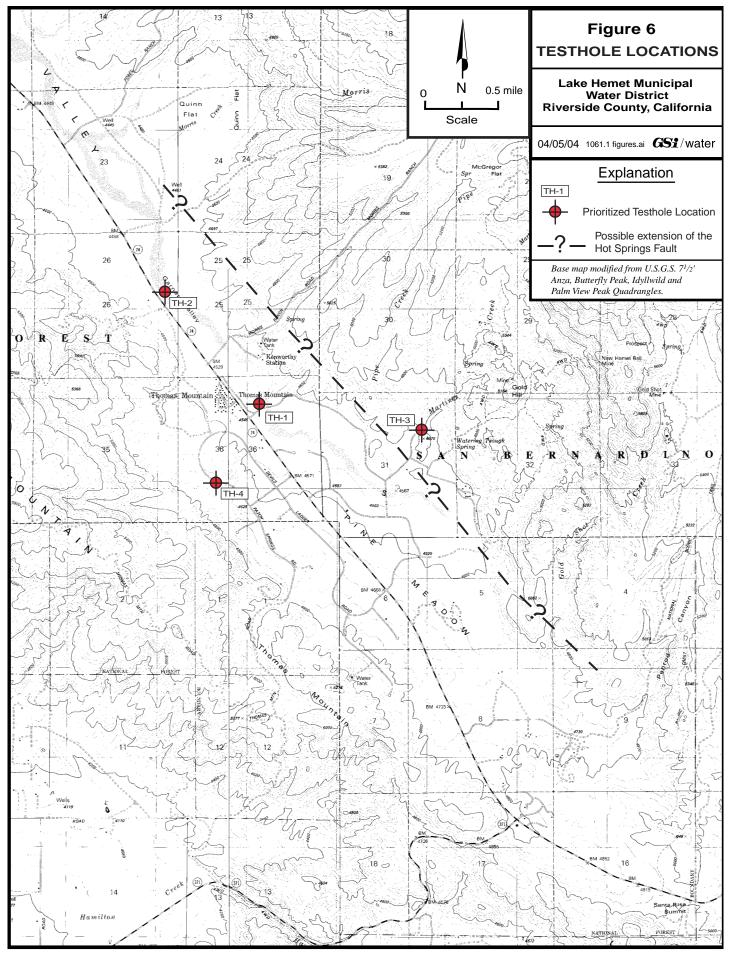
Our preferred hypothesis at this time relates to the possible extension of the Hot Springs Fault. To the north of Garner Valley, mineralized water rises along the Hot Springs Fault. The same may be occurring here - but to a much smaller degree. If this is occurring, a potential site for a new well may be on the upgradient (eastern) side of the suspected fault trace.

INTERPRETATIONS

- The highest likelihood for obtaining additional ground water production is the surficial alluvium and the Bautista beds. Surficial exposures of the granitic rocks in the vicinity have few significant fracture zones.
- Although the Thomas Mountain Fault, where exposed, shows little indication of a significant fracture zone, it may be acting as a barrier to ground water flow and additional production may be attainable by drilling near the fault.
- Currently LHMWD extracts a mean total of 243 acre-feet/year from four active wells.
 - G.V. #4 is the highest producer.
 - G.V. #1 has a relatively deep static water level and pumping level.
 - Water from G.V. #5 has a sulfurous taste and smell.
- The storage capacity of the Pine Meadows basin is about 86,500 acre-feet.
- The most probable amount of infiltration from precipitation in the Pine Meadow catchment area is about 1390 acre-feet/year during and average year of precipitation. Approximately 640 acre-feet/year is estimated will be extracted by LHMWD and other users with an increase in the number of residences to 307. This would leave 54% of the available water during an average year or 12% during a drought year. Therefore, there should be sufficient water flowing through Pine Meadow to support the proposed 307 residences during a drought year.
- The southerly (G.V. #1, #3 and #5) and northerly (G.V. #2 and #4) appear to have significantly different characteristics. The northerly wells have consistently high static and pumping water levels and similar water quality. The southerly wells have lower static and pumping water levels, are of different water quality type, and are reported to have a sulfurous taste and smell. These differences may be due to differing depths of the wells, but may be associated with an extension of the Hot Springs Fault.

Blank page

RECOMMENDATIONS AND POTENTIAL TESTHOLE LOCATIONS Figure 6: Prioritized Testhole Locations


Figure 6 shows prioritized recommended testhole locations based on the information in this report. Our highest priority testhole location coincides with the current anticipated location of G.V. #6, to be drilled later in 2004. Potential testhole locations were selected for the following reasons:

- TH-1: Good potential for significant production of good quality water due to proximity to G.V. #2 and #4 and because the location is north of the inferred subsurface barrier. The site is close to the current water supply system and has easy access. Significant bedrock fractures are unlikely at this location and the well should only be drilled to solid bedrock (approximately 500ft depth). Interference with the G.V. #2 and #4 may occur during pumping.
- TH-2: Good potential for significant production of good quality water because a well at this site will likely tap the same aquifer as G.V. #2 and #4. Access is reasonable but the site is some distance from the current water supply system. There should be minimal interference with G.V. #2 and #4. This well should also be drilled to solid bedrock (approximately 500ft depth) because significant bedrock fractures are unlikely to exist at depth.
- TH-3: Some potential for tapping a zone of ground water flow associated with the geologic contact, and lineations in the bedrock in this vicinity. Access is good and the location is close to the existing water supply system. The objective is to drill on the east of the suspected Hot Springs Fault trace. Wells to the northwest of Garner Valley have been successful by being located within the shattered zone, and on the upgradient side, of this fault. There is a possibility of poor water quality, however, and if bedrock production is not significant, alluvial production is unlikely to be good. A 300ft testhole should be sufficient to determine if significant production is available, but the final depth should be determined by examining data collected during drilling.
- TH-3: Some potential for tapping a zone of ground water flow associated with the Thomas Mountain Fault (TMF) that could potentially provide reasonable production. Water quality from such a source is unknown. Alluvial production is likely to be significant. Access to this site may be difficult. A 300ft testhole should be sufficient to determine if any significant production is available from this location, but the final depth should be determined by examining data collected during drilling.

Further recommendations for LHMWD are:

- Allow wells to recover for longer periods after pumping prior to measuring the static water level. This will help to ensure complete recovery to static conditions and may eliminate some of the variations in the static water level data.
- Conduct a test pumping program on G.V. #5. This should include an 8-hr step-drawdown test, a 24hr constant rate test and up to 12-hr recovery test and use of G.V. #2 as a monitoring well. The test results should indicate subsurface variations in aquifer characteristics and the sustainable pumping rate. During the step-drawdown test, samples should be taken for laboratory analysis of water quality at different levels of drawdown. This would help identify potential water quality problems at depth.

We recommend continuing the project with the drilling of G.V. #6. The drilling phase should be carefully monitored for subtle changes in lithology, identification of zones of production and water quality variations. The design of the production well should be based on observations made during drilling. A carefully conducted test pumping program should be completed and a pump and pumping rate should be selected for maximum efficiency by analyzing the results.

APPENDIX A

Well Summary, Drillers' Logs and As-built Diagrams

LHMWD Pine Meadow Well and Testhole Summary

		Ge	neral Informa	tion	Casing and Screen							(
LHMWD Well No. and status	Year Drilled	Contracted Driller	Latitude Longitude Elevation AMSL	Borehole Size	Total Depth Drilled (ft)	Total Depth of Casing (ft)	Casing Diameter	Screened Interval (From - To)	Slot Size and Type	Seal Depth (ft)	Pump Setting Depth (ft)	Pump Size, Type and Installation Date	Production History (af/month)	Recent Production (af/month)	Recent SWL (ft bgs, date)	Well History
G.V. # 1 Active (Pine Meadows Well No. 1)	1969	Unknown	33.36.106N 116.37.011W 4552	30" (0 to 50ft) 18.625" (50 to 477ft)	477	431	20" O.D. to 50ft 10.75" O.D. to 430ft	140 - 250 310 - 330 360 - 420	0.06" mill cut 0.06" mill cut 0.06" mill cut	50	380	25Hp Submersible 1974	85	5	110 07/10/97	drilled 3/69, installed new pump 7/97, videolog 7/10/97 (restricted perfs and iron deposits),cleaned perfs with Sonar-jet 7/15/97, lowered pump to 380' 8/00
G.V. # 2 Active (Pine Meadows Well No. 2)	1969	Bill Belknap, Reedley, CA	33.36.785N 116.37.485W 4521	28" (0 to 50ft) 17.5" (50 to 350ft)	350	Originally 328 Now 318	20" O.D. to 50ft 10.75" O.D. to 328ft	78 - 328	3/32" louvers	50	280	Goulds 90L-30 submersible 2003	2 11	11	45 09/01	drilled 10/69, installed 30HP pump 09/82, videolog (small hole in casing @ 71') + sonar jet + brush + acidify 4/88, videologs 01/99 (large encrustations) and 09/01 (perfs almost closed below 190, hole at 307'), sonar-jet and videolog and install Goulds 90L-30 30HP @ 280ft 01/03
G.V. # 3 Inactive	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	None		Discontinued use in 1984 because of sulfurous taste and smell
Testhole #3 Inactive (Pine Meadows Well No. 3)	1969	Bill Belknap, Reedley, CA	4560	28" (0 to 50ft) 17.5" (50ft to 356ft)	356	192	20.5" O.D. to 50ft 10.75" O.D. to 192ft	82 - 180	1/8" louvers	50	None	None	None	None	30 04/24/73	drilled 11/69, production was low because dd was to pump depth and pump could not be set lower because of open hole below 192' - open hole left to allow caving and widening of cavity, unknown if borehole still exists
G.V. # 4 Active	1985	Rottman Drilling Co.	33.37.031N 116.37.624W 4500	12.25" (0 to 323ft)	323	285	20" nominal to 50ft 10" nominal to 285ft	60 - 280	0.06" Johnson screen	50	220	Goulds 7WAHC275 submersible 2003	23 33	19	12 12/85	drilled 11/85, install Grunfos SP75-2 05/86, replace motor 4/87 and 8/95, replace pump with Goulds 330L 3/98, replace motor and pump 8/99, install to 170' 15HP pump 11/99, lowered to 212'? 7/02, replaced pump, lowered pump to 220' 05/03
G.V. # 5 Active	2002	L.O. Lynch Quality Wells & Pumps, Inc.	33.36.484N 116.37.019W 4548	34" (0 to 80ft) 18" (80 to 465ft)	465 e-logger	460	20.5" O.D. to 80ft 11.25" O.D. to 460ft	80 - 460	0.60"	80	315	Goulds 5CHC0404 Submersible 2002	5	5	40 8/02	drilled 07/02

5

10 m. W

J.Constant

1

I

I

1

- COpen

Married Married

and a second

1.0

•

÷

Pine Meadow Well No. 1

Drilling method:	Direct rotary with aquagel mud (0-50 feet drilled dry by bucket augar)
Bit size:	12-1/2 inch tricone
Drilling commenc	
Logged by:	David A. Lawrence, Bookman-Edmonston Engineering, Inc.
Depth	
$\frac{DCptn}{0-32}$	
	Sand, medium, well sorted, 20% fine to coarse, moist, mica, brown, gravel and boulders to 1-1/2 ft.
32 - 34	Silty sand, medium, nonplastic, brown, scattered gravels, cobbles and boulders
34 - 45	Sand, fine to medium, white, moist, some biotite
45 - 48	Sandy silt, hard, brownish green
48 - 49-1/2	Silt, brown, platy, very hard, water seeping in hole
49-1/2 - 58	Sand, very coarse, poorly graded fine to coarse, streaks brown silt
58 - 63-1/2	Sandy clay, very coarse sand, sticky grayish brown clay
63-1/2 - 73	Sand and clay, reddish brown sticky clay, fine to medium sand
73 - 86	Clayey sand, fine to coarse, brown clay
86 - 91	Sandy clay, medium to coarse sand, brown clay
91 - 101	Clay, some medium to coarse sand, greenish brown, sticky, easy drilling
101 - 108	Sandy clay, medium to coarse sand, grayisn green, soft
108 - 141	Sandy clay, fine to coarse sand 5-15%, green, soft and sticky
141 - 146	Sand with blue clay, angular fine to coarse sand clay washes
	easily from sand, probably occurs in layers
146 - 181	Sand, fine to coarse, well graded, blue (predominantly
	plagioclase) some clay layers (about 24 ft. of sand from
	$E-\log$
181 - 219	Sand, fine to coarse, mostly coarse, poorly graded, blue,
• • •	clay layers (about 25 ft. of sand from E-log)
219 - 237	Sandy clay, fine to coarse brown sand, brown clay, angular
	sand
237 - 263	Clayey sand, fine to coarse, well graded, brown clay
263 - 306	Clay, 5% sand, brown, sticky slow drilling
306 - 333	Sand, fine to coarse, brown, well graded, some clay shows Bit chatter at 322
333 - 364	
364 - 437	Sandy clay, brown, sticky, sand fine to medium
551 151	Sand, fine to coarse, brown, very angular, very slow
	drilling, sand grains are broken (fresh), some clay layers,
	subrounded gravel about 1/4-inch sampled, either hard sandstone or dull bit
437 - 468	
101 - 100	Clay, slightly sandy, brown become very yellow, flecks of
468 - 477	pure white clay easily dissolved, brown sand
	Sand or sandstone, very hard, slow drilling, fine to medium, angular

PINE MERDOW WELL NO. 1 - DETAILS OF CONSTRUCTION

30" hale dug by busket auger 憷 9-gal/sack grout slurry 20" ID x 1/4" Wall Conductor pipe, 50 long 00000 I" galu. pipe air line -1214" pilot hole reamed to 18 56" final dia. Monterey Sand Co. grovel size "C-12", 40 tons (theoretical estimate 35 tons including 15% for overbok and larger than bit size hale) Casing - 10 14" 00 x 14" Wall blank and perforated butt-welded, no collors, foreign made 52 2 Perforations - 0.060" slot x 21/2" long, 44 cuts/ft, @ 190 ft perforated pipe is GG in 2/ft openaria equals 1254 in 2 openaria total 110 perforated pipe 60' blank [] 20' perforated 30' blank 60' perforated pipe 10' blank with closed flat share bottom 20' of over hole

Pine Meadow Well No. 2

	0-31	Sand with decomposed gravel
	31-46	Sand and boulders
	46-55	Interbedded sand and clay
	55-61	Clay, silty, brown
•	61-64	Sand and gravel, gravel, gravel to 1/2 inch, sand fine to
		coarse, easy drilling
	64-72	Sand and boulders, black chips, white orthoclase sand
	72-76	Sand with residual clay, coarse sand, subangular to
		subrounded, white clay balls with sand, easy drilling
	76-79	Sandy clay, white clay, very fine sand
	79-81	Sand and gravel, very coarse sand, gravel to 1/2 inch
	81-83	Sand clay, very fine to medium sand, silty white clay
	83-90	Sand and gravel, very coarse sand
	90-93	Sandy clay, hard, fine sand, white clay
	93-98	Sand and gravel, coarse sand
	98-99-1/2	Sandy clay
	99-1/2 - 104	Sand and gravel, very coarse sand, pea gravel
	104-109	Clay, brown
•	109-111	Sand and gravel
	111-112	Sandstone, slow drilling
	112-114	Sand and gravel
	114-132	Clay, brown, very sandy, fine sand, packed
14	132-138	Sand, coarse, tight
	138-141	Silty clay, brown
	141-143	Sand, coarse, tight, subangular to subrounded
	143-145	Clay, silty with sand, tight
	145-146	Sand and gravel
	146-148	Clay, silty
1	148-152	Sand and gravel, very coarse sand
	152-153	Clay with sand, tight, silty clay
	153-156	Sand and gravel, fine to coarse sand
	156-166	Clay with sand, fine to coarse sand, brown clay, sand
		stread @ 159
	174-175	Sand
	175-180	Sand and clay
	180-182	Sand and gravel
	182-184	Clay, brown
	184-186	Sand and gravel
•	186-187	Sandy clay
	187-189	Sand and gravel
	189-191	Sand clay, scattered gravel

÷

(Cont.)

Pine Meadow Well No. 2 (Cont.)

	191-201	Sand and gravel	
	201-206	Sandy clay	
	206-210	Sand and gravel, very coarse sand	
	210-212	Sandy clay, brown	
•	212-214	Sand and gravel, packed	
	214-215	Brown clay	
	215-217	Boulders	
	217-220	Brown sandy clay	
	220-224	Boulders in clay	
	224-231	Clay, brown with boulders, very sandy clay	
	231-237	Clay, brown, lean, some cobbles	
	237-238	Sand and boulder, chips of diorite and mafic minerals	
	238-256	Clay, brown with boulders, very sandy clay	
	256-260	Boulders, very soft, easy drilling, black rock chips	
	260-265	Clay, very sandy	
	265-266	Sand, medium, angular, brown, soft	
	266-267	_ Clay, sandy, brown	
	267-270	Sand and gravel, very coarse, easy drilling	
	270-271	Cobbles and boulders	
	271-272	Clay, brown, sandy	
	272-274	Sand and gravel, brown and black	
•	274-284	Sand and gravel, green, easy drilling, angular to subangula	ar
	284-285	Clay, silty, bluish green, hard	
•	285-289	Sand and gravel, graded, green, angular	
	289-290	Clay, silty, bluish green, hard, some sand	
•	290-312	Sand and clay, packed	
	312-313	Sand, packed	
	313-314	Rocks and boulders	
£	314-315	White sand	•
	315-317	Clay, brown	
	317-318	Clay, blue	
	. 318-322	Sand and gravel	
	322-325	Rocks and gravel and sandy clay	
	325-330	Boulders and sandy clay	
	330-332	Sand and gravel	
	332-349	Rocks and boulders	
	349-350	Rocks and clay, black chips	

Details of Construction

2' blank casing left above G.S. r 4. 28" Conductor pipe hale -Sand & cement grout, ready-mix, gravity 11半 ‡[†] placed through 2" pipe 20" ID M.S. Conductor Pipex 14" Wall 3/16 to "+" well rounded grovel 80 1" Std. black pipe air line 17 "2" hole for production casing 10 1/4" OD x 3/15 Wall blank M.S. casing 10 3/4" ODx 3/16" Wall Ful Flo 3/32" slot louvered casing General Notes: 1. Drilled by Bill Belknap, Reedley, Colif. 2. Casing furnished by Roscoe Moss Co. 3. Well development pumped-by Lowell Mann, 250 Conchella Punip and Supply, Inc. 4. Drilled by reverse-circulation rotary method 5. Roller bits used throughout 6. Well was swabbed after gravel placement 7. Againter pump test conducted 8. Water In drilling octained from Thomas Mt. Well 9. Static Water level \$ 25 10. Drilled & pumped during Oct & Nov., 1959 11. Location: NE14 of NW14 of Sec. 36 TSS RSE SBBLY 12. Specific Capacity = 3.24 gpm/it drown after 6.5 hours pringing 108 gan 13. Well designed for 165 gpm @ static W.L. of 25', S.C. of 3, and having no falling water

Pine Meadow No. 3

0-6	Topsoil
6-12	Sand
12-44	Silty clay, brown, some decomposed granite
44-48	Gravel and cobbles to 4"
48-55	Clay, brown
55-58	Sandy clay, blue
58-64	Clay, brown
64-65	Sandy gray clay with granitic rocks
65-67	Clay, brown
67-68	Clay, blue
68-69	Sand '
69-74	Sandy clay, blue
74-77	Sand
77-79	Clay, blue
79-81	Sand and rocks
81-82	Clay, blue with sand layers
82-85	Sand and rocks, very coarse sand
85-86	Sandy clay, blue
86-90	Sand and gravel, coarse
90-92	Clay, blue
92-110	Clay and gravel, blue clay
110-112	Sand and gravel, coarse
112-114	Sandy clay, blue
114-119	Sand and gravel, coarse
119-125	Sandy clay, blue with gravel
125-129	Sand and gravel, coarse
129-135	Sandy clay, brown
135-138	Sandy clay, blue, with gravel
138-143	Clay, grayish brown
143-145	Clay, blue, silty with fine sand
145-151	Sand, fine to medium, bluish brown, some clay
151-154	Sand, coarse, green and white, easy drilling
154-158	Clay and sand, interbedded, brown and blue sand and clay
158-160	Sand, medium to coarse, brownish blue, easy drilling
160-164	Sand, coarse
164-166	Sandy clay
166-168	Sand
168-171	Clay and sand, grayish blue clay, brown sand
171-174	Sand, brown to green, medium to coarse
174-175	Sand and clay, blue clay, brown sand
175-177	Sand, clean quartz, white, medium to coarse
	,,

é

Pine Meadow No. 3 (Cont.)

177-179	Sand and clay, very sandy silty clay, gray with coarse sand
179-180	Sandy gray clay, fine to very coarse sand
180-182	Clay, sandy, dark brown clay
182-197	Clay, gray, very sandy, coarse sand
197-201	Sand, coarse brown
201-206	Sand, medium to coarse, with clay, 80% sand
206-208	Sand, medium to coarse, uniform, bluish white
208-209	Clay with sand
209-216	Sand, medium to coarse, bluish white, uniform, easy drilling
216-220	Clay with sand, medium to coarse sand, white sand, gray clay
220-236	Sandy clay, hard, gray, fine to medium sand
236-237	Sand, coarse
237-238	Sandy clay, blue
238-242	Sand, coarse
242-245	Sandy clay, blue
245-246	Sand, coarse
246-247	Sandy clay, blue
247-250	Sandy clay, brown
250-256	Sandy clay, blue
256-257	Sand, coarse
257-259	Clay, brown
259-269	Sandy clay, blue
269-270	Sand, coarse
270-271	Clay, brown
271-273	Clay, blue
273-275	Sand, coarse
275-283	Clay, blue
283-285	Clay, brown
285-291	Sandy clay, blue
291-302	Sandstone, bluish green, some clay
302-316	Sand, brown, with white and brown clay
316-321	Sand, green, with white clay
321-325	Sandy clay with rocks and gravel
325-327	Clay
·327-329	Boulders, hard, green quartz
329-330	Clay and cobbles, brown and blue clay
330-332	Sand and gravel, green, easy drilling
332-337	Sandstone, green, angular with mafic minerals
337-356	Quartzite, brown, hard iron stains

Details of Construction

2 blank caring left above G.S. -28" Conductor pipe hole 坩 -Sand Scement grout, ready-mix, gravity placed through 2" pipe -20" ID x 1/4 " Wall M.S. Conductor pipe 3/16" to 14" well rounded gravel \$ I" sta black pipe airline 1034 0D x 3/16 wall blank M.S. casing 10 3/4" ODX 1/6" Wall Standard louvered 1/8" slot M.S. cosing 10 34" OD x 3/16" Wall blank M.S. casing Sand and Cement grout plug, ready mix, gravity placed through 2" pipe, "syd, 210st in place 2' of 3/16" to "4" gravel 20 Rocks to 2° from river channel for bridging Taper cone from 10 14" 00 to 16" 00 x 3/16 usall, blank, , 3" Shoe at bottom of 16" 00 taper Open hole, 17/2 General Notes 1. Drilled by Bill Belknap, Reedley, Colif 2. Drilled by reverse-circulation rotary, using roller bits 3. Well was bailed heavily after gravel placement 4. Water for drilling from old homesterd will, 5100 HSE 5. Static water level 24' below G.S. 11/11/59 6. Location SW 14 of SE 14 of Sec 31 TGS RUE SBBLGM 7. Well was E-logged by Schlumberger 8. Production was low on this well because water levels could 8. (conit) liner should be put inside not be drawn down believe the primp setting at the The existing casing opposite the bottom of the coving. The pump was not set lower for fear open hole and the well re-plumped of the well caving in. The purpose of leaving the aste oper with the pump setting at the Was so that it usual case in creating a larger cryity

TRIPLICATE **Owner's Copy**

Chamal analysis made? Yes 🗆

Yes 🚺

Was electric log made?

STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES WATER WELL DRILLERS REPORT

Do not fill in

Zip_93534

Date of this report Jan 22, 1996

157536 No.

State Well No.

Other Well No.

Notice of Intent No. 147241

mit No. or Date Law

(1) OWNER	R: N	ame	Lake He	nen Municip	al Water Di	Istrict	(12)	WELL	L LO	G: Total dept	323 ft. Der	oth of complet	ed wer 285 ft.
Address 40988				-			from ft.	to		ormation (Descri	-	-	
City_Henet.					7;	p 92344	0	- (ine to coors			
						/·	50			ed. coarse s			****
(2) LOCAT County_River	side	Or	WELL		ions) : Well Number		60		70 fi	ine sand			
Well address if di		from	whome Ger				70			layey sand	ו -		
Township			Bange		Section		75	- 8	30 Sa	andy clay	11/1	······	
Distance from citi		de mai		Hery 7	4 & Morris	RAnch Rd.	80	- 8	85 Br	com clay			
Lake Henet,			$\frac{1000}{100}$	n' Fast of	Intersecti	ion &	85			and clay			,,
100' North of							99			rown clay	<u>}</u>		
		110		1	··· _ ·· · · · · · · · · · · · · · · ·	. <u> </u>	130			ndy clay			<u></u>
				X	(3) TYPE	OF WORK:	140	6		ticky brown	clay		
			-			Deepening	144			andy clay	<u></u>		
			al		Reconstruction		145			ed. to fine	sand		
	1	1	14		Reconditioning		155			andy clay	\sim		
			T		Horizontal We		175			and brown cl	~		<u> </u>
					Destruction		180			andy clay	ну <u>(</u>)		
	Ĵ	2	1		destruction ma procedures in	iterials and	185			ticky brown	2 2 11	,	· · · · · · · · · · · · · · · · · · ·
		3	1000'		(4) PROPO		188		•	andy clay	1 V. N		
	5	-	1		Domestic		190			laver sand	<u> </u>		
					Irrigation		191			ed. sand			
		1	. AU	N-11	Industrial		200			andy clay			
	-	2-10			Test Well		216			layey sand			
×	2	1	//		Stock	Ú Ú	220			ndy clay			
	. مر	~	∕~ _e ∶!			1							
L	<u>/\</u>			<u></u>	Municipal	1	252			<u>ed. coarse s</u>			
		CATI	ON SKETC			<u> </u>	260	A		ed. fine san	d		
(5) EQUIPMEN	T:			(6) GRAVEL	PACK: Monte	rey Sant	265			ilty sand -			
Rotary XX			erse 🗆 🔿	Yes No		× 12	285			ndy clay			·····
Cable		Air		Diameter of bo						coun clay			<u></u>
Other			et 🗆	Packed from		<u>285ft.</u>	307	- 3	<u>73 Sa</u>	indstone			
(7) CASING IN			$\langle \rangle \langle \rangle$	(8) PERFOR									
Steel Plast		Con	verete D	Type of perfor	1								<u></u>
		Dia.	Gage or	From	E To	Skot		-				,	
ft. ft		'n.	Wall	ft	ft.	size		-				<u></u>	
	<u>_}</u>	10	.250	<u> 60 </u>	280	.060		_					
0 50		20	.250	Johnso	h Hi-Cap Se	teen X-HD							/
280285		10	.250		L			-					
(9) WELL SI					•								
Was surface sanit	tary se	al prov	vided? Ye	A.	If yes, to dept								
Were strata sea				Yes 🗌 No	Interval	ft.	Wester		lov.	27 19.85	Compl	eted Der	16 19.85
Method of sealin			cenent				Work s			S STATEMEN	Compl		
(10) WATER Depth of first w				12		ft.						report is true	to the best of my
Standing level at	•			12		ft.		ige and			ing and the second s	· ·	_
(11) WELL ?	TEST	S:					SIGNE) /		Detter (T	1 Martin	<u>"/(.)</u>	<u>.</u>
Was well test ma Type of test	ade?			Bailer	whom tothe	n drlg.Co.	1		-	Rottman, (P		1	
Depth to water	at et.	Pum: art of	A	5ft.	At end of t	est_Q5ft	NAM		(Pe	Drilling Co		ed or printed)	
	-	l/min		hours	Water tempe	~	Addres	4647	71 N.	Division			
	<u> </u>	-,			·								

IF ADDITIONAL SPACE IS NEEDED. USE NEXT CONSECUTIVELY NUMBERED FORM DWR 188 (REV. 7-76)

No 🚺 If yes, by whom?

No 🗌 If yes, attach copy to this report

City_

License No._

Lancaster, CA

316599

1	Owner ⁵ Date Ma	s Well N ork begai	07/?	<u>.</u> 9/0	2	Ended <u>3</u>	416705	<u>,</u> , , , , , , , , , , , , , , , , , ,	.47U					L		
	- 12 M - S.	TAPACOR 1	- · · · F	<u>+</u> ⊥++3	Loi	1 369AU EA		V da - to L L V		ntal H	ealth		PN IRS	OTHER		
	1.	mit No	25079)	1 1 1 1 1	E LOG	t Date	7/25/	92							
. •								2050154	\		WELI			- 7 . 1		
	+≤'≡'	•1 2+• <u>∸</u> .	DALL.	6 - 14. 16		- 18 20 MTAU			met Aur O. Box			-lat	ar Dst.			
			— ::ЕТно	0		nry F DESCRIPTION					<u>.</u>					
				Deser		s ral gran sit	Hemet-	$- \frac{\sqrt{n}}{\sqrt{4}}$				ST	ATE ZIP			
	0	2.1	to	ים S	oil	A	Address 7	05270	— WELL Penrod	LOCATI	$\frac{0N}{10}$	7,7				
	24	39	cc	urs	e fi	ne sand:	3			-Valley						
	39	34	CC	urs	e sa	and clay	cobb1	County	Di		•					
	84	114	CC	urs	e se	ands clay	y swed	els co	phyeisor	562 1	age <u></u>	Parce	1-07	.4		
	114	129	CC	Jur3	e sa	inds cobi	Dies c	<u>lav</u>	Township _	<u>65</u> 1	Range <u>- 3 E</u>	Secti	on	-36		
	129	144				inds hard					NORTH SEC.	Long	itude _		I WEST	
	144	174				inds hard				LOCATI	ON SKETCH				MIN. SEC. CTIVITY (∠) —	
2) 1. y	$\frac{174}{219}$	249				<u>nite sau</u>		ard CI	ay	N	ORTH		*******	-*	NEW WELL	
, C.	249	309	1			inds dry			Kevi	sea Ca	implet	16-11			FICATION REPAIR	
	309	324				blæs cla .es & san						C.	1		Deepen Other (Specify)	
	324	339				ind clay		gilic	a	1627	1	計三7	102			
		354				casand o		31110	$^{\circ}$ Z	1-1	JAK.	GI = 1 , ≪ (F	DESTROY (Describe Procedures and Materials	
		369			cla		July		K		$\sqrt{3}$	L 3 D 1	2,		Under "GEOLOGIC LOG"	
		384				nd clay			1 LA						NNED USES (∠) R SUPPLY	
.1	erer 5.	444				ilica sa	and								Domestic Public	
		460				der roch			WEST		Ì		AST	'	MONITORING	
1		1	1						3				Ξ L		TEST WELL	
_	.,	: ; ;	Pe	rfo	rati	.ons:			H		1	کیانداز این رو رو او		САТНО	DIC PROTECTION	
			;						7			CYNI			HEAT EXCHANGE	
		: T	0'-						3			-			DIRECT PUSH INJECTION	
	`	T				erf.			77	FUCI BU	XSII			VAF	POR EXTRACTION	
Ť	<u> </u>		<u>.60' -</u>							-	x 571	kλ			SPARGING	
ŀ			00' -			erf.			Illustrate or Describe Distance of Well from Boads Buildings							
F		1	90' -						Fences, Rivers, etc. and attach a map. Use additional paper if necessary. PLEASE BE ACCURATE & COMPLETE.							
ŀ			$\frac{10'}{0} - \frac{10'}{2}$				on t	ho	WATER LEVEL & YIELD OF COMPLETED WELL							
ŀ			· · · · ·		ceer	end car		ne	DEPTH TO FIRST WATER 40 (FL) BELOW SURFACE							
ŀ		ر ز	ottom	•					DEPTH OF ST							
ľ	- <u></u>	1						•		-	0 (Ft.) & DA					
	TOTAL	FPTILOF	LORING	46	0	cust -					0.0 (GPM) 8			-	<u> </u>	
			COMPLET								irs.) TOTAL DRA			(Ft.)		
								1					vien.			
		PTH	BORE-			(ASING (S)			DEPTH		ANN	ULAR	MATERIAL	
	FROM S	URFACE	HOLE DIA.		<u>E(∠)</u>		INTERNAL	GAUGE	SLOT SIZ	11	OM SURFACE			TY	PE	
	Ft. :	o Ft	(inches)	BLANK SCREEN	CON- DUCTOR FILL PIPE	MATERIAL / GRADE	DIAMETER	OR WAL	IF ANY		t. to Ft.	MENT	BEN- TONITE	FILL	FILTER PACK	
							(Inches)	THICKNES	S (Inches)				(∠)	(三)	(TYPE/SIZE)	
-	0	89	34"		X	steel	20"	.250			0 83'	X				
	0	460	13"	$\left - \right ^{1}$				1			I .					
ŀ		460		<u>k x</u>	+	steel	10 3	14 .2	50 .60							
F	<u>U</u>									<u> </u>				X	<u>3 x 16</u>	
F			1												rock	
Г		ATTAC	IMENTS	∟ (<u>∠</u>)				L	- CERTI	FICATION	STATEMEN	<u> </u>				
		Geologia				I, the unde	ersigned, ce	ertify that th	is report is cor				f my kn	owledg	je and belief.	
			estruction Dia	agram		NAME T.	O. Tr	vnch (mality	Well	s & Pum	ຫຣ.	Inc			
			sical Log(s)			(PERS	ON. FIRM. OR C	CORPORATION)	Unality))		· _ · · /				
م _ `	•		er Chemical	Analyse	s	856	W. S	eventi	Stree	t. Sai	1 Jacin	to C	2A _0	258	2	
						ADDRESS					CITY			STATE	ZIP	
	<i>аттасн а</i>	DDIT ONAL		N. IF IT	EXISTS	Signed WELL		RIZED REPRESE	NTATIVE		<u> </u>	3/20	/02			
	an ta ba	· –			דיחחא =							WIE NUMEE	,		-57 LICENSE NUMBER	
				; r		SIME OF AGE R	S NEEDED.	USE NEXT	CONSECUTI	VCLT NUME	ERED FORM					

APPENDIX B

LHMWD Water Level and Production Records

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1983												
G.V. #1						92	99.5		100	83	79	84.5
G.V. #2						5				17.5	24	22
1984												
G.V. #1	76.5		140	140		139			113	132.6	120.5	147
G.V. #2	30		32	22		22				26		22
1985												
G.V. #1	108.5				147.6							
G.V. #2	18.5	19.1	19	17.5						41	33.5	114.8
1986												
G.V. #1		111		103.6								
G.V. #2	26.7	39.5	23.6	26	25.9			30.1	30		27.8	24.5
G.V. #4					7	8.5	9				11	11.4
1987												
G.V. #1	121.2			117		103.1	109	110				224.5
G.V. #2	22.4	21.1	22	22.3					32.3	32.5	30.4	28.8
G.V. #4	11	11.2	11.9	9.5		10		15		16.3	15.8	15
1988												
G.V. #1	107.7	107.5	97.7	101	97.9				132.4			115.4
G.V. #2	25.3	25	22	24.3	22.4	24.8	25.4		28.2		28.2	27
G.V. #4	15.9	15.1	15.2		15.7	16.9	16.5		10.4			
1989												
G.V. #1	104.6	99.4	132.2	103.8	105.3	101.3				116.8		112.5
G.V. #2	25		24.2	24.3	25.6	26.8				32.9		29.8
G.V. #4		18.8	18.2									25.9

Pine Meadows Water Levels (Feet Below Surface)

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1990												
G.V. #1	112	104.1	103.1	103.9	107.4					212.8		
G.V. #2	28.7	28.1	28	27.9	29	30.3			44.8	42.5	43.1	39
G.V. #4		24.1	23.7	22.7		63.1					29	
1991												
G.V. #1	131.9	134.5		118.5	109.7		134.6					112
G.V. #2	36.4	37.4	36.1	31.2	26	25.5	28.1	30.9	31.9	30.9	30.9	26.7
G.V. #4	28.5	27.8	19				17.5				18	18.4
1992												
G.V. #1	102	1123	97.2	100.2	97.6	97.2			128.9	116.6	115.7	116.4
G.V. #2	24.8	24.6	21.4	20.3	18.9	19.3	20.9	24.2	24.3	24.8	23.3	23.9
G.V. #4	18.2	18.1	12.8	9.2	11.4					19.8	18.5	20.6
1993												
G.V. #1	96.7	93.7	87	84.5	84	93.2	100.5		17.9		139.9	95.8
G.V. #2	22	15.6	12	10.7	10.8	11.3	18.8		104.9	20	20.4	18
G.V. #4	17.8	5.9	4.8	5.6		7.3	7.2				10.1	9.9
1994												
G.V. #1	58.6	48.2	48.8	44		43.8	147.3	140.8		102.1	93.1	93
G.V. #2	15.4	14.1	12.8	11.6	13	12.9	67			25	21.5	20
G.V. #4	9.7	9.7	6.8	6.4		12.1					15.4	14.6
1995												
G.V. #1	87.8	78.7	87.8	76.3	115.5	111.6	83.2	93.8		87.6	88.2	87.5
G.V. #2	19.6	16.2	19.6	15	12.3	12.9			18.7	17.3	25.1	23.9
G.V. #4		6.4			12					11.6	10.5	10.2
1996					<u> </u>			(00.0				
G.V. #1	87.8	85.3	84.5	86.3	84.5	89.3		100.9		134.9	134	133.9
G.V. #2	23	16	15.6	16.5	16.9	21.2		26		40.8	40.1	38.8
G.V. #4	11.1	9.9	9.6	10		60.1		60.2		17.6	18	15.9
1997												
G.V. #1	89.4	86.7	83.5	86.8	85.4	90.1	99.9		111.9	90.3	120.3	103.2
G.V. #2	20.6	19.4	18.5	20.1			39.3	49.6	52.4	47	36.9	29.6
G.V. #4	14.3		13.5				18.7	20.1	22.3	18.8	18.8	20

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1998												
G.V. #1	104	106	99.8	110	149	95.9	151	154.9	151	151	143.6	119
G.V. #2	27.5	30.6	30.4	22	20.4	18.4	23	40.9	30.5	30.5	29.8	26.3
G.V. #4	19.8	18.8	7.1	6.9	6.8	14	6.8	10.9	11	11	11.9	11.4
1999												
G.V. #1	107.3	100.9	99.8	98	99.3	99.6	104.4	126	116.3	110.3	105.2	139.2
G.V. #2	21.3	20.1	19.4	21.2	22	22.4	31.6	40.3	40	32.4	28.6	33.7
G.V. #4	10.9	11.5	11.7	11.9	11.1	12.9	11.1	20.2	19.5	20.2	24.7	19.4
2000												
G.V. #1	135.4	109.3	128.9	110.5	115.5	117.2	131.2			134.3	122.3	113.9
G.V. #2	31	28.6	89.4	27.8	28.7	30.4	49.5			66.6	38.6	33.9
G.V. #4	19.2	18.7	47.6	18.5	20.6	24.8	23.4			23.9	24.1	23.2
2001												
G.V. #1	123.2	122.6	106.1	122.4					142.6	143.6	126.3	127.3
G.V. #2	39.1	37.9	38.1	30	30.5	37.6			70.6	43.6	47.7	49.2
G.V. #4	24.6	24.4	22.7	24	24.2		32.6			30.3	30.5	28.7
2002												
G.V. #1	117.9	119.4	113.7	131.1	123.9	120.1		178.2	143.2	176.2	139.9	124.7
G.V. #2	37.7	35.2	36.2	36.7	39.9	36.7		77.7	59	56.6	50.2	45.7
G.V. #4	27.6	60		46.7	29	31		34.6	35.5	36.1		35.1
2003												
G.V. #1	118.9	113.9	111.5	118.2	123.3		166.2	151.3	148.8			
G.V. #2	42.1	38.9	38.8	41.9	46.8	88.1	78.5					
G.V. #4	35.2	33	32.5	28.4	28.6	29.4	33.6		95.3			
G.V. #5	59.3	66.6	104.9	111.7	99.8	128	89	91.2	79.5			

Pine Meadows Wells - Pumping Water Levels

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1983												
G.V. #1												
G.V. #2						25.5	74	75	78.5			
1984												
G.V. #1							219					
G.V. #2							109.2	89.1	76	42	88.1	
1985												
G.V. #1		194	191	190.5		143.2	155	147		146.2	178	
G.V. #2					141	74.5	77	74.5				
1986												
G.V. #1	141.5		152		144		163.5	173.8	140.1		153.9	148
G.V. #2						94	128					
G.V. #4								50.2	33.1			
1987												
G.V. #1		128.1	138.2						139.6	144.6	143.5	
G.V. #2						89	93	75				
G.V. #4							50.4					
1988												
G.V. #1						148.1	148	232.5		148.2	148	
G.V. #2								61.4		35.3		
G.V. #4				61.4				61.5		61	60.8	60.
1989												
G.V. #1							185.1	189.1	191.5		189.8	
G.V. #2		82.9					112.1	103.5	104.1		74.2	
G.V. #4	60.6			61.1	60.8	64.5	80.8	62	63.5	60.5	61.1	
1990												
G.V. #1						264	153.9	211	197		281.1	256
G.V. #2							94.8	138				
G.V. #4	61.5				62.6		60.5	62.7	63.2	64		62.3

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1991												
G.V. #1			272.5			243		239.2	285.4	251.1	260.2	
G.V. #2												
G.V. #4				44.4	45.8	58.3		31.2	60.7	60.5		
1992												
G.V. #1							228.6	221.4				
G.V. #2												
G.V. #4						60.2	60.3	60.8	60.5			
1993												
G.V. #1								146.6		145		
G.V. #2								96.4				
G.V. #4					54.5			57.5	58.6	58		
1994												
G.V. #1									218.2			
G.V. #2								132.7	99.6			
G.V. #4							91.7	93	53.1	60.5		
1995												
G.V. #1									145			
G.V. #2							93.7	102.5				
G.V. #4	57.8			30.1	53.3	53.3	53.9	54.3	56.8			
1996												
G.V. #1							154.2		225			
G.V. #2							100.3		109.8			
G.V. #4	57.8			30.1	59.6		60.1		60.6	60.8		59.3
1997												
G.V. #1												
G.V. #2					84.1							
G.V. #4		57.4		60.4	59.3							
1998												
G.V. #1												
G.V. #2												
G.V. #4												

		Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1999												
G	.V. #1												
G	.V. #2												
G	.V. #4												
	2000												
G	.V. #1												
G	.V. #2												
G	.V. #4												
	2001												
G	.V. #1							316.4	316.6				
G	.V. #2							180.4	179.9				
G	.V. #4							59.1	59.3	60.3			60.5
	2002												
G	.V. #1							321.4					
G	.V. #2							185.6					
G	.V. #4			60.8				182				60.3	
	2003												
G	.V. #1												
G	.V. #2												
G	.V. #4												
G	.V. #5												

	Well F	Production	(acre-feet)		
	G.V. #1	G.V. #2	G.V. #4	G.V. #5	TOTAL
1987	8.44	0.64	10.71		19.79
1988	42.80	12.21	172.07		227.08
1989	22.71	15.71	205.06		243.48
1990	67.01	20.62	142.18		229.81
1991	55.31	2.69	132.60		190.60
1992	20.91	1.22	211.28		233.41
1993	24.16	7.66	204.82		236.64
1994	14.13	21.09	205.74		240.96
1995	4.89	21.73	188.00		214.62
1996	13.95	21.34	201.06		236.35
1997	28.94	26.44	194.94		250.32
1998	47.74	30.57	126.97		205.28
1999	28.73	34.35	192.95		256.03
2000	33.30	36.50	189.68		259.48
2001	34.08	27.04	182.26		243.38
2002	45.36	31.52	204.88	3.54	285.30
2003	15.13	46.75	60.64	27.94	150.46
Average (1988 - 2002)	32.27	20.71	183.63	3.54	236.85

APPENDIX C

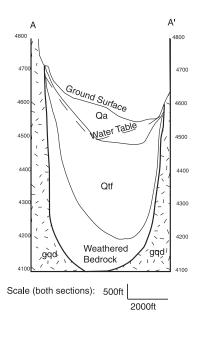
Darcy's Law, Storage Calculations and Precipitation Data

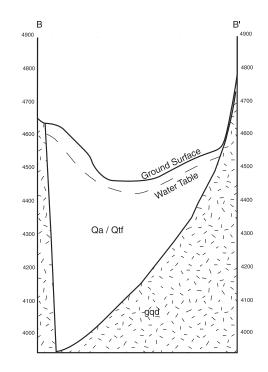
Darcy's Law Calculations

Darcy's Law: Q = K * i * A

where Q is discharge, K is hydraulic conductivity, *i* is hydraulic gradient, and A is the cross-sectional area. Hydraulic conductivity is a coefficient of proportionality describing the rate at which water can move through a permeable medium (Fetter, p. 142).

Our calculations used the following: $1 \text{ acre-ft} = 43,560 \text{ ft}^3$


Two cross-sections were completed across Garner Valley. The cross-sections were based on available gravity, well log, water level and geological information. Sufficient information was available in the area around cross-section A to attempt a section that included four different units. Only two units were used in cross-section B because less data was available. However, a cross-section produced by Durbin was located very close to cross-section B allowing confidence in the accuracy of depth to bedrock. These two cross-sections were used to double-check each other and an average of the two outflow values was used in the budget synthesis.


Cross-Section A (southern):

 $\begin{array}{l} K_{alluvium} = 100 gpd/ft^2 \ (based on the moderate value of clean sand/high end of silty sand from Freeze & Cherry) \\ K_{Bautista beds} = 5 gpd/ft^2 \ (based on low values for silty sand/medium values of silt from Freeze & Cherry) \\ Kweathered bedrock = 1 gpd/ft^2 \ (based on low end of fractured rock values from Freeze & Cherry) \\ K_{granitic bedrock} = 0.2583 gpd/ft^2 \ (based on unweathered bedrock average from Kaehler and Hsieh) \\ Cross-sectional area (alluvium) = 259,600 \ ft^2 \\ Cross-sectional area (Bautista beds) = 1,392,160 \ ft^2 \\ Cross-sectional area (Weathered Bedrock) = 916,960 \ ft^2 \\ Cross-sectional gpd(granitic bedrock) = 1,104,460 \ ft^2 \end{array}$

Cross-Section B (northern):

Kalluvium & Bautista beds = 10gpd/ft² (based on low end of clean sand/medium value of silty sand from Freeze & Cherry) Kgranitic bedrock = 0.2583gpd/ft² (based on unweathered bedrock average from Kaehler and Hsieh) Cross-sectional area(alluvium & Bautista beds) = 3,226,080 ft² Cross-sectional area(granitic bedrock) = 3,014,480 ft²

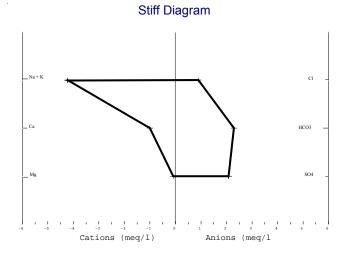
Storage Calculation

The volume of Pine Meadow was calculated using the following method:

The cross-sectional area from the southerly cross-section divided by two (to account for the reduction in valley depth towards the Santa Rosa drainage divide) and multiplied by the length of the valley (to an arbitrary point where the valley gets quite narrow and the Bautista beds are exposed on the surface).

This volume was then multiplied by the effective porosity (10-20% for the alluvium, and 1-3% for the bedrock) to produce an estimate of the storage capacity. The storage capacity of Pine Meadow was calculated to be about 86,500 acre-feet.

This value corresponds well to the 200,000 acre-feet calculated by Durbin (1975) for the whole of Garner Valley. Bookman-Edmonston Engineering, Inc. (1970) calculated a storage capacity of 15,000 acre-feet for Pine Meadow. This value is probably an underestimate that resulted from their assumption of depth to bedrock being 300ft. In fact, Durbin (1975) measured the depth to bedrock as up to 550ft using gravity data.

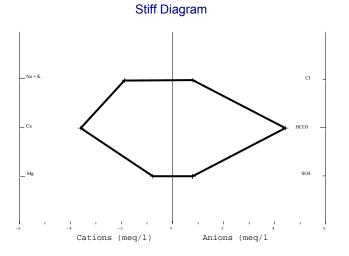

Year	Average	Average
	Precip. (inches)	Precip. (acre-ft)
4070	00.05	0.400
1970	23.35	9430
1971	15.02	6066
1972	12.24	4943
1973	18.38	7422
1974	14.27	5763
1975	15.6	6300
1976	19.28	7786
1977	17.82	7196
1978	36.97	14930
1979	21.54	8699
1980	37.92	15313
1981	14.48	5848
1982	34.1	13771
1983	37.48	15136
1984	17.68	7140
1985	16.65	6724
1986	17.33	6998
1987	18	7269
1988	15.75	6360
1989	7.47	3017
1990	12.93	5222
1991	27.74	11202
1992	22.26	8989
1993	31.56	12745
1994	15.97	6449
1995	31.7	12802
1996	17.39	7023
1997	16.4	6623
1998	28.01	11311
1999	13.39	5407
2000	14.13	5706
2001	8.72	3521
2002	5.53	2233

Riverside County Flood Control (Lake Hemet station) Annual Precipitation

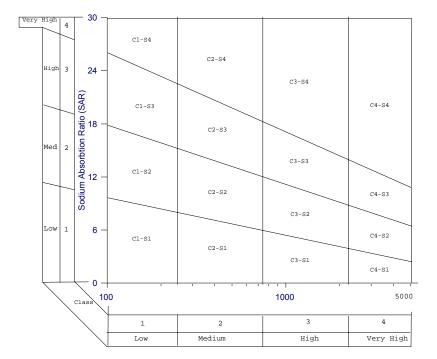
APPENDIX D

Water Quality Analyses and Stiff Diagrams

G.V. #1 Sample collected 03/13/2002


Very High		— 30 —				
	4					
		•	Cl-S4			
				C2-S4		
High	3	24 —		02-54		
		24			C3-S4	
		$\widehat{\sim}$				
		SAF	C1-S3			C4-S4
	\vdash	Sodium Absorbtion Ratio (SAR) T -				
		₩ 18 –		C2-S3		
		L L				
Med	2	btic				
		IOSO	C1-S2		C3-S3	
		₹12 –	C1-52			
	\vdash	ium		C2-S2		C4-S3
		Sod				
		0,			C3-S2	
Low	1	6 -				
			C1-S1			C4-S2
				C2-S1		
					C3-S1	C4-S1
		└ <u>0</u> –				C4 51
			1			
		Class 10	0		1000	5000
			1	2	3	4
			Low	Medium	High	Very High

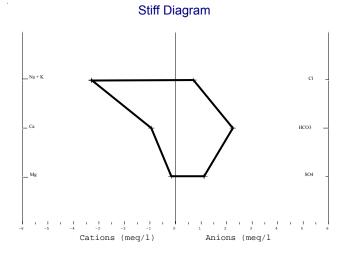
Chloride (Cl)	32	mg/l	0.9	meq/l
Sulfate (SO4)	100	mg/l	2.1	meq/l
Bicarbonate (HCO3)	140	mg/l	2.3	meq/l
Potassium (K)	2	mg/l	0.1	meq/l
Sodium (Na)	96	mg/l	4.2	meq/l
Calcium (Ca)	20	mg/l	1.0	meq/l
Calcium hardness	52	mg/l		
Magnesium (Mg)	1	mg/l	0.1	meq/l
Total filterable residue as CaCO3	330	mg/l		
Temperature	15	deg C		
рН	8.30	pH Units		
Total Alkalinity as CaCO3	110	mg/l		
Total Dissolved Solids	330	mg/l		
Electrical Conductivity	560	umhos/cm		


Langlier Index	-0.43
Will the water form carbonate scale?	NO
Ryzner Index	8.20
Is the water corrosive?	YES
SAR	5.68

	SAR	5.68
--	-----	------

G.V. #2 Sample collected 03/13/2002

Chloride (CI)	28	mg/l	0.8	meq/l
Sulfate (SO4)	38	mg/l	0.8	meq/l
Bicarbonate (HCO3)	270	mg/l	4.4	meq/l
Potassium (K)	2	mg/l	0.0	meq/l
Sodium (Na)	42	mg/l	1.8	meq/l
Calcium (Ca)	72	mg/l	3.6	meq/l
Calcium hardness	220	mg/l		
Magnesium (Mg)	9	mg/l	0.8	meq/l
Total filterable residue as CaCO3	380	mg/l		
Temperature	15	deg C		
рН	7.40	pH Units		
Total Alkalinity as CaCO3	220	mg/l		
Total Dissolved Solids	380	mg/l		
Electrical Conductivity	610	umhos/cm		



Langlier Index	-0.48
Will the water form carbonate scale?	NO
	NO

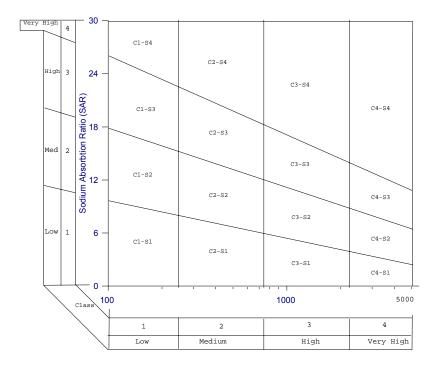
Ryzner Index	7.32
Is the water corrosive?	YES
SAR	1.24

	SAR	1.24
--	-----	------

G.V. #3 Sample collected 26/04/1984

Very High		— 30 —	1			
	4					
		•	C1-S4			
				C2-S4		
High	3	24 -				
					C3-S4	
		я Ц				
		(SA	C1-S3			C4-S4
		달 18 —				
		Sodium Absorbtion Ratio (SAR) T -		C2-S3		
Med	2	otion				
		sort			C3-S3	
		₹ 12 –	C1-S2			
	-	ium		C2-S2		C4-S3
		Sod				
		0,			C3-S2	
Low	1	6 —				C4-S2
			C1-S1	c2 - 51		04-52
				62-51	C3-S1	
						C4-S1
\leftarrow		└─ 0 –	1			
\backslash		Class 10	00		1000	5000
	/					
			1	2	3	4
			Low	Medium	High	Very High

Chloride (CI)	25	mg/l	0.7	meq/l
Sulfate (SO4)	54	mg/l	1.1	meq/l
Bicarbonate (HCO3)	137	mg/l	2.2	meq/l
Potassium (K)	1	mg/l	0.0	meq/l
Sodium (Na)	75	mg/l	3.3	meq/l
Calcium (Ca)	19	mg/l	0.9	meq/l
Calcium hardness	57	mg/l		
Magnesium (Mg)	2	mg/l	0.2	meq/l
Total filterable residue as CaCO3	245	mg/l		
Temperature	15	deg C		
рН	8.40	pH Units		
Total Alkalinity as CaCO3	123	mg/l		
Total Dissolved Solids	245	mg/l		
Electrical Conductivity	430	umhos/cm		


-0.29
NO

Ryzner Index	7.88
Is the water corrosive?	YES
SAR	4.37

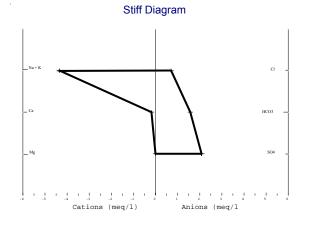
G.V. #4 Sample collected 03/21/2001

Stiff Diagram Na + K Cl _ Ca HCO3 SO4 Mg 1 -4 1 2 1 4 1 Anions (meq/l Cations (meg/l)

Chloride (Cl)	32	mg/l	0.9	meq/l
Sulfate (SO4)	44	mg/l	0.9	meq/l
Bicarbonate (HCO3)	240	mg/l	3.9	meq/l
Potassium (K)	1	mg/l	0.0	meq/l
Sodium (Na)	40	mg/l	1.7	meq/l
Calcium (Ca)	65	mg/l	3.2	meq/l
Calcium hardness	200	mg/l		
Magnesium (Mg)	10	mg/l	0.8	meq/l
Total filterable residue as CaCO3	340	mg/l		
Temperature	15	deg C		
рН	7.20	pH Units		
Total Alkalinity as CaCO3	200	mg/l		
Total Dissolved Solids	340	mg/l		
Electrical Conductivity	550	umhos/cm		

Langlier Index	-0.76
Will the water form carbonate scale?	NO
	Ne

Ryzner Index	7.51
Is the water corrosive?	YES
SAR	1.22


SAR	1.22

Water Classification

Very High

30

G.V. #5 Sample collected 08/28/2002

Chloride (Cl)	25	mg/l	0.7	meq/l
Sulfate (SO4)	100	mg/l	2.1	meq/l
Bicarbonate (HCO3)	96	mg/l	1.6	meq/l
Potassium (K)	0	mg/l	0.0	meq/l
Sodium (Na)	100	mg/l	4.3	meq/l
Calcium (Ca)	4	mg/l	0.2	meq/l
Calcium hardness	10	mg/l		
Magnesium (Mg)	0	mg/l	0.0	meq/l
Total filterable residue as CaCO3	270	mg/l		
Temperature	15	deg C		
рН	9.00	pH Units		
Total Alkalinity as CaCO3	85	mg/l		
Total Dissolved Solids	270	mg/l		
Electrical Conductivity	500	umhos/cm		

Cl-S4 C2-S4 ligh 3 24 C3-S4 Sodium Absorbtion Ratio (SAR) T --C1-S3 C4-S4 C2-S3 ied 2 • C3-S3 Cl-S2 C2-S2 C4-S3 C3-S2 Low 6 C4-S2 Cl-Sl C2-S1 C3-S1 C4-S1 0 100 1000 Conductivity (umhos/cm) at 25 degrees 5000 10000 Class 3 4 1 2 Low Medium High Very High

Langlier Index	-0.57
Will the water form carbonate scale?	NO

Ryzner Index	9.09
Is the water corrosive?	YES

SAR	14.32

Irrigation Water Classification